Noniterative Computation of Gauss--Jacobi Quadrature
نویسندگان
چکیده
منابع مشابه
Fast and Accurate Computation of Gauss-Legendre and Gauss-Jacobi Quadrature Nodes and Weights
An efficient algorithm for the accurate computation of Gauss–Legendre and Gauss– Jacobi quadrature nodes and weights is presented. The algorithm is based on Newton’s root-finding method with initial guesses and function evaluations computed via asymptotic formulae. The n-point quadrature rule is computed in O(n) operations to an accuracy of essentially double precision for any n ≥ 100.
متن کاملHigher Order variance and Gauss Jacobi Quadrature
In this report, we study in a detailed way higher order variances and quadrature Gauss Jacobi. Recall that the variance of order j measures the concentration of a probability close to j points x j,s with weight λ j,s which are determined by the parameters of the quadrature Gauss Jacobi. We shall study many example in which these measures specify adequately the distribution of probabilities. We ...
متن کاملGauss Legendre-Gauss Jacobi quadrature rules over a tetrahedral region
This paper presents a Gaussian quadrature method for the evaluation of the triple integral ( , , ) T I f x y z d xd yd z = ∫∫∫ , where ) , , ( z y x f is an analytic function in , , x y z and T refers to the standard tetrahedral region:{( , , ) 0 , , 1, 1} x y z x y z x y z ≤ ≤ + + ≤ in three space( , , ). x y z Mathematical transformation from ( , , ) x y z space to ( , , ) u v w space maps th...
متن کاملComputation of Gauss-Kronrod quadrature rules
Recently Laurie presented a new algorithm for the computation of (2n+1)-point Gauss-Kronrod quadrature rules with real nodes and positive weights. This algorithm first determines a symmetric tridiagonal matrix of order 2n+ 1 from certain mixed moments, and then computes a partial spectral factorization. We describe a new algorithm that does not require the entries of the tridiagonal matrix to b...
متن کاملGauss-Jacobi-type quadrature rules for fractional directional integrals
Fractional directional integrals are the extensions of the Riemann-Liouville fractional integrals from oneto multi-dimensional spaces and play an important role in extending the fractional differentiation to diverse applications. In numerical evaluation of these integrals, the weakly singular kernels often fail the conventional quadrature rules such as Newton-Cotes and Gauss-Legendre rules. It ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Scientific Computing
سال: 2019
ISSN: 1064-8275,1095-7197
DOI: 10.1137/18m1179006